3.127 \(\int \frac {\sec (c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx\)

Optimal. Leaf size=85 \[ \frac {2 \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{\sqrt {a} d}-\frac {\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{\sqrt {a} d} \]

[Out]

2*arctanh(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/d/a^(1/2)-arctanh(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/(a+a*cos
(d*x+c))^(1/2))*2^(1/2)/d/a^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 85, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.190, Rules used = {2780, 2649, 206, 2773} \[ \frac {2 \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{\sqrt {a} d}-\frac {\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{\sqrt {a} d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]/Sqrt[a + a*Cos[c + d*x]],x]

[Out]

(2*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(Sqrt[a]*d) - (Sqrt[2]*ArcTanh[(Sqrt[a]*Sin[c + d
*x])/(Sqrt[2]*Sqrt[a + a*Cos[c + d*x]])])/(Sqrt[a]*d)

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2649

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, (b*C
os[c + d*x])/Sqrt[a + b*Sin[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2773

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(-2*
b)/f, Subst[Int[1/(b*c + a*d - d*x^2), x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2780

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[
b/(b*c - a*d), Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] - Dist[d/(b*c - a*d), Int[Sqrt[a + b*Sin[e + f*x]]/(c +
d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rubi steps

\begin {align*} \int \frac {\sec (c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx &=\frac {\int \sqrt {a+a \cos (c+d x)} \sec (c+d x) \, dx}{a}-\int \frac {1}{\sqrt {a+a \cos (c+d x)}} \, dx\\ &=-\frac {2 \operatorname {Subst}\left (\int \frac {1}{a-x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d}+\frac {2 \operatorname {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d}\\ &=\frac {2 \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d}-\frac {\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 65, normalized size = 0.76 \[ -\frac {2 \cos \left (\frac {1}{2} (c+d x)\right ) \left (\tanh ^{-1}\left (\sin \left (\frac {1}{2} (c+d x)\right )\right )-\sqrt {2} \tanh ^{-1}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right )\right )}{d \sqrt {a (\cos (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]/Sqrt[a + a*Cos[c + d*x]],x]

[Out]

(-2*(ArcTanh[Sin[(c + d*x)/2]] - Sqrt[2]*ArcTanh[Sqrt[2]*Sin[(c + d*x)/2]])*Cos[(c + d*x)/2])/(d*Sqrt[a*(1 + C
os[c + d*x])])

________________________________________________________________________________________

fricas [B]  time = 0.73, size = 164, normalized size = 1.93 \[ \frac {\sqrt {2} \sqrt {a} \log \left (-\frac {\cos \left (d x + c\right )^{2} + \frac {2 \, \sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{\sqrt {a}} - 2 \, \cos \left (d x + c\right ) - 3}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right )}{2 \, a d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+a*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/2*(sqrt(2)*sqrt(a)*log(-(cos(d*x + c)^2 + 2*sqrt(2)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c)/sqrt(a) - 2*cos(d*
x + c) - 3)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) + sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*sq
rt(a*cos(d*x + c) + a)*sqrt(a)*(cos(d*x + c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)))/(a*d
)

________________________________________________________________________________________

giac [B]  time = 1.87, size = 162, normalized size = 1.91 \[ \frac {\sqrt {2} {\left (\frac {\sqrt {2} \sqrt {a} \log \left (\frac {{\left | 2 \, {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - 4 \, \sqrt {2} {\left | a \right |} - 6 \, a \right |}}{{\left | 2 \, {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} + 4 \, \sqrt {2} {\left | a \right |} - 6 \, a \right |}}\right )}{{\left | a \right |}} + \frac {\log \left ({\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2}\right )}{\sqrt {a}}\right )}}{2 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+a*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

1/2*sqrt(2)*(sqrt(2)*sqrt(a)*log(abs(2*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 -
 4*sqrt(2)*abs(a) - 6*a)/abs(2*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + 4*sqrt(
2)*abs(a) - 6*a))/abs(a) + log((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2)/sqrt(a))
/d

________________________________________________________________________________________

maple [B]  time = 0.61, size = 224, normalized size = 2.64 \[ -\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (\sqrt {2}\, \ln \left (\frac {4 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right )-\ln \left (\frac {4 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}+4 a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right )-\ln \left (-\frac {4 \left (\sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}-a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+2 a \right )}{-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right )\right )}{\sqrt {a}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)/(a+a*cos(d*x+c))^(1/2),x)

[Out]

-cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2^(1/2)*ln(4/cos(1/2*d*x+1/2*c)*(a^(1/2)*(a*sin(1/2*d*x+1/
2*c)^2)^(1/2)+a))-ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+a*2^(1/2
)*cos(1/2*d*x+1/2*c)+2*a))-ln(-4/(-2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/
2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a)))/a^(1/2)/sin(1/2*d*x+1/2*c)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sec \left (d x + c\right )}{\sqrt {a \cos \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+a*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sec(d*x + c)/sqrt(a*cos(d*x + c) + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{\cos \left (c+d\,x\right )\,\sqrt {a+a\,\cos \left (c+d\,x\right )}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(c + d*x)*(a + a*cos(c + d*x))^(1/2)),x)

[Out]

int(1/(cos(c + d*x)*(a + a*cos(c + d*x))^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sec {\left (c + d x \right )}}{\sqrt {a \left (\cos {\left (c + d x \right )} + 1\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+a*cos(d*x+c))**(1/2),x)

[Out]

Integral(sec(c + d*x)/sqrt(a*(cos(c + d*x) + 1)), x)

________________________________________________________________________________________